

Miniature Flow Sensor For Use as a S&A Second Environment Sensor

Michael Deeds (Code 4420E) (301)744-1933 deedsma@ih.navy.mil

NDIA
47th Annual Fuze Conference
9 April 2003

Differential Pressure Flow Sensor (DPFS) Purpose

Measure fluid flow to detect post launch environment for S&As while meeting the following requirements

- Small
- Non-intrusive
- Accurate

Originally developed for torpedo Safety and Arming, but readily adaptable to other applications

Differential Pressure Flow Sensor Features

Utilizes the principle of Pitot theory, without protruding from the vessel surface

- Performs well in air or fluid media
- Mounts flush to vessel surface: not prone to damage
- Molded plastic or metal housing easily formed to vessel contour
- Can be formed directly in vehicle skin
- Range and resolution tailored via pressure sensor
- Solid state: no moving parts!!

DPFS integrated into S&A

Accurate, low cost bulk fluid flow or mass flow meter

Differential Pressure Flow Sensor Flow Sensor Description

Theory of operation:

Flow over a body is drawn into the flow ports due to viscous force interaction between the body and the fluid. The momentum of the fluid creates a pressure difference which can be sensed by a commercial off the shelf (COTS) differential pressure sensor.

Differential Pressure Flow Sensor Design for Application

Application specific requirements

Environmental fluid media survivability

Performance

Reynolds number Range/resolution

Pressure sensor selection

Flow porting configuration

Ramp profile

Port orientation

Port location

Costumed configured DPFS design

Readily adapted to most flow environments

Differential Pressure Sensor

Selection

Batch fabricated Honeywell MEMS sensor selected for torpedo application:

Key selection criteria

- Media compatibility
- Size
- Reliability
- Environmental
- Cost
- Power
- Supply, control, and readout electronics
- Sensor range & resolution
- Adaptability

Honeywell differential pressure sensor

- Compatible with air or water
- Volume < .06in³
- Silicon diaphragm with embedded piezoresistive elements
- Robust; solid state
- <\$20 in very small quantities
- <25mW supply
- Simple supply, control, and readout electronics
- Family of pressure ranges available; resolution sufficient
- Molded housing available in custom configurations

Differential Pressure Sensor

Honeywell COTS

Several port variations

Several pressure ranges

20mW power

Temperature compensated

Flow Tunnel Configuration

Novel packaging

Embedded

micromachined diaphragm

Low cost

High Pressure S&A Configuration

Molded housing

Media seal

Silicon diaphragm

Conductive media seal

Molded housing with conductors

Sensor Assembly (Exploded)

Honeywell Differential Pressure Sensor Environmental Performance

- Operating Temperature (manufacturer): -40 to 185°F
- Storage Temperature (manufacturer): -67 to 212°F
- Shock (CTIP program): 1500g 0.3ms shocks
 - 6 axis, 5 shocks/axis, -60°F, ambient, 160°F
- Miscellaneous:
 - Background pressure survivability demonstrated to above 1400psi
 - Compatibility with salt water demonstrated
 - Performance in various operational environments demonstrated

Honeywell sensor survived all tested environments without significant sensitivity changes

DPFS as a Environmental Sensor Torpedo Application

DPFS signals an actuator to remove a lock on the slider: sensor NOT direct acting

1st environment Torpedo launch 2nd environment Water flow DPFS Logic S&A chip G-Sensor Lock Optical Interrupter Sensor Lock

Differential Pressure Flow Sensor Torpedo Application

6.75 inch Canistered Countermeasure Anti-torpedo Torpedo (CCAT)

- Selected as environmental (flow) sensor for safety and arming (S&A) device
- Selected to supplement/validate axial accelerometer of S&A inertial measurement unit

S&A with DPFS

Extensive laboratory & field testing

- Operational environments (e.g., temperature, pressure, etc.)
- Indian Head flow simulator
- Torpedo at-sea demonstrations
- Carderock tow tank

Differential Pressure Flow Sensor

At Sea Demonstrations

Several tests were conducted on torpedo trials

Flow sensor calibration curves across two sea runs agree extremely well

At Sea Demonstrations

Turn Rate Sensitivity

- Low speed-high turn rate
- Insignificant sensitivity changes
- High speed-high rate maneuvers
- Flow field disrupted
- Sensitivity decreases
- Output at high speed large
 - Parabolic response
 - Response remains well above noise floor

Effects of speed and turn rate on sensitivity

- Flow environment easily detected
- Sensitivity drop due to maneuvers insufficient to merit loss of environment

At Sea Demonstrations

Flow Sensor Performance

- Flow sensor exhibited excellent response to flow (15psi)
- Parabolic fits (calibration) between flow sensor and vehicle speed fairly accurate (R²>0.98)
- Calibration curves from each sea run agreed extremely well
- Flow sensor proved suitable as post launch environmental sensor to meet weapon safety criteria
 - Sensor output at low speeds well above noise floor
 - Sensor output loss at high speed, high turn rate insufficient to merit loss of flow environment detection

Differential Pressure Flow Sensor

Non-Torpedo Applications

Commercial applications

- Licensed for marine, pipe flow, aeronautical and automobile fields of use
- Commercially available from Wickford Technologies for marine use
- Pipe flow product in development

Military applications

- Safety and Arming (environment detection)
 - Missiles/Rockets
 - Gun rounds (non-spinning)
- Inertial measurement units (IMUs)
- Speed indication
 - Aircraft
 - Marine vessels
 - Autonomous vehicles

Get

wickfordtechnologies.com

Solid model: cross section

Differential Pressure Flow Sensor Utility in Various Flow Fields

In water tests

- Span nearly 3 order of magnitude of Reynolds number, Rex
- Flow tunnel
- Torpedo
- Tow carriage
- Boat

Air environments

- Demonstrated in air gun test
- Air kinematic viscosity 1/16 of water: lower Re_x for a given flow speed
- High speed air applications (e.g., gun rounds)
 - Re_x in characterized range
- Low speed air flow requires higher resolution pressure sensor

Differential Pressure Flow Sensor

Air Gun Tests

Conducted several instrumented air gun tests

- Speeds up to 500ft/s
- Sensitivity approached that of Pitot tubes
- All sensors survived launch environments

Differential Pressure Flow Sensor Second Environment for Gun Fire Fuzing

Suitable as the 2nd environmental sensor for non-spinning rounds

Desirable features include

- Small (1in³ non-optimized; 0.3in³ demonstrated)
- Lightweight
- Low power (<25mW)
- Low cost (\$15/sensor element)
- Simple processing electronics

Adaptation to gun rounds

- Re_x number for gun round/missile application overlaps prior field tests
- Revisit pressure sensor selection
- Assess survivability in gun launch environment

Differential Pressure Flow Sensor Summary

- Non-intrusive bulk fluid speed measuring device
- Cheap, miniature, low-power MEMS package
- Performs well in air or water
- S&A post launch environment sensor for Canistered Countermeasure Antitorpedo Torpedo (CCAT)
- Demonstrated over nearly 3 orders of magnitude of Reynolds number
- Licensed and commercialized for boating use

Suitable 2^{nd} environmental sensor for torpedo, missile, and gun round applications

